GlobalEPD

A VERIFIED ENVIRONMENTAL DECLARATION

Environmental
Product
Declaration

EN ISO 14025:2010
EN 15804:2012+A1:2013

AENOR Confía

Clay Facing Bricks
 "U" masonry units in accordance with EN 771-1

Date of issue:
2017-06-12
2022-06-11

GlobalEPD Code: 008-004

Spanish Association of Clay Brick and Roofing Tile Manufacturers (HISPALYT)

The EPD holder is responsible for the content of the Declaration. The holder is responsible for keeping the records and documents supporting the content of the Declaration

Holder of the Declaration

Asociación Española de Fabricantes de Ladrillos y Tejas de Arcilla Cocida (HISPALYT)

Cl Orense, $10-2^{\text {a }}$ Planta, Ofic. 13-14	Tel	(+34) 917709480
28020 Madrid	Mail	hispalytahispalyt.es
Spain	Web	www.hispalyt.es

LCA Study

Cátedra UNESCO de Ciclo de Vida y Cambio Climático (ESCI-UPF)

Passeig Pujades, 1	Tel	(+34) 932954710
E-08003 Barcelona	Mail	unescochairesci.upf.edu
Spain	Web	www.esci.upf.edu

Operator of the Global EPD Programme

AENOR Internacional S.A.U.
Génova, 6
28004 Madrid
Spain

Tel (+34) 902102201
Mail aenordapeaaenor.com
Web www.aenor.com

AENOR is a founding member of ECO Platform, the European Association of Environmental Declarations verification Programmes

GlobalEPD-RCP-008
CEN standard EN 15804:2012+A1:2013 serves as the core RCP

Independent verification of the declaration and data, according to EN ISO 14025:2010

Verification Body

AENOR

1 General information

1.1. The organization

The holder of this Environmental Product Declaration (EPD) is Hispalyt, the Spanish Association of Clay Brick and Roofing Tile Manufacturers. Its contact data are given on page 2 of this EPD.

This EPD is for the exclusive use of Hispalyt and represents the environmental information of its associates, whose data may be obtained by contacting Hispalyt, or at the following URL:

www.hispalyt.es/ladrilloscaravista/fabricantes

1.2. Scope of the Declaration

This EPD describes one tonne of clay facing bricks and their accessory units manufactured in Spain by the member companies of Hispalyt. This EPD was based on 2015 production data.

The Life Cycle Analysis (LCA) results are based on the data provided by the representing manufacturer of the Hispalyt Facing Brick Sector.

It is considered to cover "from cradle to grave".

1.3. Lyfe cycle and conformity

This EPD was drafted and verified in accordance with the EN ISO 14025:2010 and EN 15804:2012+A1:2013 Standards and the Product Category Rules (PCR) listed in table 1.

This EPD includes the lifecycle stages listed in table 2. The EPD type is cradle-to-grave.

Title	Clay products used in construction	
Registration code	GlobalEPD-RCP-008	
Issue date	2017\|02	20
Conformity	EN 15804:2012+A1:2013	
Programme	GlobalEPD	
Programme Operator	AENOR	

Table 1. Information about the PCR

This EPD may not be comparable with those developed in other programs or under different reference documents; it may not be comparable with EPD that are not developed under EN 15804:2012+A1:2013 standard. In the same way, Environmental Product Declarations cannot be subject to comparison if the origin of the data is different (the databases, for example), if not all relevant information modules are included, or if they are not based on the same scenarios.

Comparison of construction products shall be based on the same function, using the same functional unit at building level (or architectural or civil engineering works), i.e. including the performance of the product during the life cycle and the requirements stated in EN ISO 14025, 6.7.2.

	A1	Raw material supply	X
	A2	Transport to the manufacturer	X
	A3	Manufacturing	X
\%	A4	Transport to the building site	X
	A5	Installation / construction	X
$\begin{aligned} & \stackrel{\sim}{\circ} \\ & \stackrel{N}{5} \\ & \stackrel{y}{3} \end{aligned}$	B1	Use	X
	B2	Maintenance	X
	B3	Repair	X
	B4	Replacement	X
	B5	Refurbishment	NR
	B6	Operational energy use	X
	B7	Operational water use	X
	C1	De-construction / demolition	NR
	C2	Transport	X
	C3	Waste processing	X
	C4	Disposal	X
	D	Reuse, recovery and/or recycling potentials	MNA
$X=$ Module included in the LCA; NR = Not relevant module; MNA = Module not assessed			

Table 2. System boundary. Information modules included

2 The product

2.1. Identification of the product

The products dealt with in this EPD are those defined as clay masonry "U" units for unprotected masonry walls, columns and partitions mentioned in EN 771-1 Specification for masonry units - Part 1: Clay masonry units.

For more information on types of facing brick, see subclause 2.1 of the Hispalyt catalogue of clay solutions for compliance with the Technical Building Code (Catálogo de Soluciones Cerámicas para el cumplimiento del Código Técnico de la Edificación (CTE)), which may be downloaded free over its website.

2.2. Intended use of the product

Facing bricks are those used for masonry not protected by a layer of suitable rendering or by cladding, and that may therefore be exposed to rain, freeze/thaw, or that may be in contact with the soil and groundwater.

Unprotected masonry can either be masonry in external walls which is fully unprotected, or which is intended to be provided by a limited protection (e.g. by a thin layer of render) or internal wall. It may or not be loadbearing.

2.3. Composition of the product

Clay facing bricks and accessory units are made from
clay or other argillaceous materials, with or without sand, fuel, or other additives fired at a sufficiently high temperature to achieve ceramic bond.

Raw materials	Content	Unit
Clay	98.2	$\%$
Additives	1.8	$\%$

Table 3. Composition of the product

Figure 1. Clay

Figure 2. Installed product

3 Information regarding the LCA

3.1. Life cycle analysis

This EPD is based on the Hispalyt Sector LCA Report for Six Clay Construction Products (Informe de ACV sectorial de seis productos de arcilla cocida utilizados en la construcción de Hispalyt), prepared by the UNESCO Chair in Life Cycle and Climate Change.

A representative manufacturer from the Hispalyt Facing Brick Sector was selected. A study of the main important input and output data (thermal energy consumption, electric energy and emissions) was conducted for the purpose.

Maximums, minimums and weighted averages were obtained as study results (taking production volume into consideration). That manufacturer coming closest to the mean was taken as representative manufacturer.

Data for the study was compiled from seven manufacturers accounting for 60% of production.

The AENOR GlobalEPD Programme PCRs for Clay Construction Products were observed in preparing the LCA report.

3.2. Functional Unit

The functional unit is defined as: 1 tonne of facing brick and accessory units, with an expected average reference service life of 150 years.

The gross dry product density under consideration in this EPD is $780 \mathrm{~kg} / \mathrm{m} 3$ for perforated bricks and 2300 $\mathrm{kg} / \mathrm{m} 3$ for solid bricks. These data were taken from the Catalogue of construction elements of the Technical Building Code (Código Técnico de la Edificación, or CTE), March 2010 version.

The following conversion factor may be used for transforming the functional unit for one tonne of clay facing bricks into one square metre of unprotected masonry:

$$
\frac{M \times 10-3}{(h+0,01) \times(l+0,01)}
$$

Whereby, according to the manufacturer's declaration:
M: mass of the unit in kg
l: length of the unit in m
h: heigh of the unit in m

3.3. Reference service life

A reference product service life of 150 years has been used, in keeping with the PCRs for EPDs for clay construction products, drawn up by the European federation of brick and roofing tile manufacturers (TBE).

Figure 3. Installed product

4 System boundaries, scenarios and additional technical information

4.1. Processes that precedes manufacturig (upstream) and manufactuing of the product (A1-A3)

The industrial manufacturing process for ceramic materials includes the steps below.

Clay Extraction: The clay is extracted from quarries, subject to strict controls for environmental safety and respect. Once quarries have been exploited, they are regenerated for different uses, preferably agricultural. The raw material from the quarries is stockpiled before it enters the production line.

Crushing and Grinding: The preparation of the raw material used in making ceramic products consists of crushing prior to entry in the plant and grinding at the plant.

Crushing reduces the size of the grains of clay, achieving homogenisation of the material, preventing greater energy consumption, and lengthening the service life of equipment. Once they are crushed, the different types of clay are stored in box feeders.

Grinding consists of a second reduction in the size of clay particles, using pan mills, disintegrators, rollers, etc.

Blending: Once the granulometric levels required for the raw material have been achieved, the clay is introduced into the mixer, where the first addition of water
takes place to obtain a plastic mouldable material for extrusion.

Forming: The clay afterwards passes through the extruder, where a vacuum pump extracts all the air it may contain and presses it against a mould, obtaining a column shaped in the form of the product. This system reduces industrial water consumption and facilitates working with dryer ceramic pastes.

Cutting and Stacking: After its passage through the extruder, the column is then cut using a set of wires and the final product dimensions are set. The ceramic product is placed onto steel rails or pallets before introduction into the drying area.

Drying and Firing: The stacked product is introduced into the drying area, which seeks to reduce the content in humidity of the items by up to $1-2 \%$. The material from the drying area enters the tunnel kiln for the firing process. Current technology allows for industrial production with excellent thermal performance. A reduction in energy consumption as well as gas emissions into the atmosphere is thus achieved.

Packing and Storage: Once the firing process is finished, the ceramic product from the kiln carts is removed and unloaded on the packing and bagging conveyors. Lastly, the packages are stored in the stockyard to await transport to the building site.

Figure 4. Product stage

AENOR

4.2. Transport and Construction (A4-A5)

The representative manufacturer bases the calculation of transport distances on the orders served during reference year 2015. The gross dry density of $780 \mathrm{~kg} \mid$ m3 for perforated brick and $2300 \mathrm{~kg} / \mathrm{m} 3$ for solid brick is based on the Catalogue of construction elements of the Technical Building Code (CTE), March 2010 version.

Parameter	Value (per functional unit)	Unit
Fuel type and consumption of vehicle or vehicle type used for transport	0.297 I diesel/km in 28 -34-tonne lorry	
Distance	366	km
Capacity utilisation (including empty returns)	85	$\%$
Bulk density of transported products	Perforated brick 780 Solid brick 2300	$\mathrm{kg} / \mathrm{m}^{3}$
Volume capacity utilisation factor (factor: $=1$ or <1 or \geq 1 for compressed or nested packaged products)	<1	

Table 4. A4 Transport to the building site
In general terms, the installation of ceramic products at the building site is mainly manual and little or negligible use of energy or water is required. The storage of clay products at the building site does not require any special care aside from the usual good safety and health practices. A 3% loss of material (in mass) during the installation has been considered.

Parameter	Value (per functional unit)
Waste materials on the building site before waste processing, generated by the product's installation (specified by type)	30 kg waste
Output materials (specified by type) as result of waste processing at the building site e.g. of collection for recycling, for energy recovery, disposal (specified by route)	15.68 kg recycled

Table 5. A5 Installation of the product in the building

4.3. Use related to the building fabric (B1-B5)

The PCRs used consider the impact during the phase of use (B1) null or negligible.

The PCRs used consider that clay facing bricks do not
require maintenance, repair or replacement. Therefore, no impact is declared in modules $\mathrm{B} 2, \mathrm{~B} 3$ and B 4 .

The impact associated to refurbishing a building with facing bricks is not considered relevant and is declared as such in module B5.

4.4. Use related to the operation of the building (B6-B7)

Modules B6-B7 are not relevant for facing bricks and therefore the impact on these modules is considered null.

4.5. End of life (C1-C4)

Parameter	Value fper functiona	Unit
Collection process specified by type	0	kg collected separately
	1000	kg collected with mixed construction waste
Recovery system, specified by type	0	kg for re-use
	460	kg for recycling
	0	kg for energy recovery
Disposal, specified by type	540	kg product or material for final deposition
Assumptions for scenario development	Waste intended for landfill is transported 62 km by road to a controlled inert landfill, while waste intended for recycling is transported 40.5 km	

Table 6. C1-C4 End of life

4.6. Benefits and burdens beyond the limits

 of the system (D)Module D has not been taken into consideration

5 Declaration of the environmental parameters of the LCA and LCI

Tables 7, 9 and 10 include the parameters describing environmental impacts, resource use, waste categories and the output flows defined in EN 15804.

In addition, Table 8 includes data on the parameters describing environmental impact additional to that defined in EN 15804.

The data in the following tables refer to the functional unit contemplated in this EPD.

The system boundaries and the information modules considered as well as the nomenclature used may be consulted in Table 2, found on page 3 of this EPD.

Table 7. Parameters describing environmental impacts defined in EN 15804

Table 8. Parameters describing additional environmental impact other than those defined in EN 15804

Table 9. Parameters describing resource use

Table 10. Parameters describing output flows and waste categories

References

[1] General Instructions of the GlobalEPD Programme, 1st revision. AENOR. February 2016
[2] EN ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations Principles and procedures (ISO 14025:2006)
[3] EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products
[4] GlobalEPD-RCP-008 Productos de arcilla cocida utilizados en construcción. AENOR. February 2017
[5] LCA sectoral report prepared by the UNESCO Chair in Life Cycle and Climate Change
[6] Product Category Rules for developing EPDs for clay construction products, prepared by the European federation of brick and tile manufacturers (TBE)
[7] EN 771-1:2011+A1 Specification for masonry units. Part 1: Clay masonry units
[8] Catálogo de Soluciones Cerámicas para el cumplimiento del Código Técnico de la Edificación (CTE) by Hispalyt
[9] Catálogo de elementos constructivos del Código Técnico de la Edificación (CTE) by the Ministry of Development

índex

1
2
3
4

5

General information
3

The product 4

Information regarding the LCA 5

System boundaries, scenarios and additional technical information6

Declaration of the environmental parameters of the LCA and LCI8
References 12

AENOR
 confia

A verified enviromental declaration

Global EPD

